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ABSTRACT

The present investigation is a theoretical one. A new technique is devised
to predict both the temperature and velocity distributions in the Trombe
wall. A new analytical solution is found for the two dimensional boundary
layer equations in a Trombe wall channel for steady state regime with a
constant wall temperature. The unsteady state case is worked out and
an analytical solution is found for temperature, nondimensional stream
function, and Blasius velocity profiles. An analytical solution is found for
the case when the wall temperature is not uniform but of the form of the
power law distribution. The analytical results are compared with those
obtained using different numerical techniques and with some available

experimental data. A good agreement is found between these results.
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NOMENCLATURE

Ci-1s constants

Cp specific heat at constant pressure
di_a constants

D : substantial derivative .

f nondimensional stream function
G generalized Grashof number

Gr grashof number

g gravity acceleration

k thermal conductivity

L characteristic length

M _a constants

Nu Nusselt number

P pressure

Pr Prandt! number

Q generated heat

Re Reynold number

T temperature

Tw wall temperature

T, ambient temperature

u z-component velocity

|4 velocity

v y-component velocity

T vertical coordinate,see Fig.(3.1)
¥ coordinate normal to the wall.Fig.(3.1)
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Creak symbols

Mt Id LY LD | TN o

g 6o = a

ubscripts

constant

constant

kinematic viscosity

dynamic viscosity

fluid density

volumetric thermal expansion coefficient
thermal diffusivity. '

“dimensionless temperature

stream function
similarity variable
time

air

particular
complementary
wall

viil
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Chapter 1

INTRODUCTION:

1.1 Introduction

With the ever growing concern for energy conservation, a great deal
of interest has recent.ly been shown. in the ﬁse of solar energy for the
purpose of heating dwellings.

Since the Construction in 1967 in France of the first house with a
"Trombe wall” there has been continuing interest regarding the potential
of passive solar systems. A Trombe wall Fig.( 1.1.a ) is essentially high
capacitance solar collector coupled directly to the spaces to be heated.

Solar radiation is absorbed on the outer surface of the wall. Energy
is transferred from the room side of the wall to the spaces to be heated,
by convection ﬁnd radiation. Energy can be transferred to the room by
gir circulating through the gap between the wall and glazing throixgh
openings at the top and bottom of the wall. The surface of the mass

wall facing south (m the northern hemisphere) is blackened and glazed.

The surface gets heated by the sun during the shine hours and may be
covered by insulation during the offshine hours to reduce heat losses to

outside air. The thermal storage wall may be made of concrete, or water,

1
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it is common to stackup drums full of water, one nbove the others.

1
Overhang v
Warmed air from
vent opening
Glazing Storage Wall Rooms
Radiation and Convection
/ to room
Room air
v

Fig.1.1.a. vent dampers in Trombe wall are used to vent the gap

between glazing and wall in summer.

1.1.1  Concrete Trombe Wall

Trombe wall is essentially a thick wall, with the outer surface blackened

and glazed. The storage mass is concrete. Solar radiation is absorbed by

the blackened surface and is‘stored as sensible heat in the wall as shown

H

2
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in Fig.{ 1.1.b ).

Room
Glazing Tre
Blackened
surface

™~

Mowvable
Insulation

Fig.1.1.b Concrete Trombe Wall

1.1.2 Water Trombe Wall

Water wall is based on the same consideration as concrete Trombe
wall except that it employs water as the storage material. It consists
of containers (metallic) filled with water and is kept south facing. One
surface of the wall is blackened and glazed while the other surface can
either be in direct contact with the living space or be separated from it

by a thin concrete wall or insulating layer as shown in Fig.( 1.1.c ).

¥
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Water
Glazing drums
Room TRC

Water

drums
Movable
Insul_ation

.

Fig.1.1.c Water Trombe Wall

1.2 Outline of Theoretical Contribution

The idea of utilizing and developing Trombe wall has been investigated

by many researchers during the last twenty years. -Many methods have

been devised to predict and measure the temperature profile through thé -

wall under different wal! conditions.

In this study a new analytical method is devised to predict both the
temperature and velocity distributions in the Trombe wall. The obtained
analytical results will be compared with same numerically predicted pub-

lished data, as well as same with available experimental data.

}
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1.3 Tayout of the thesis

The thesis is divided into five chapters, of which this introduction is

the first. Chapter two is a literature survey of the work done on numerical

and analytical prediction for laminar convection within the Trombe wall’

channel. Chapter 3 describes physical model and mathematical analysis
. of the problem.

Chapter 4 discusses the predicted results and compares them with the
numerical ones. Finally chapter 5 reports the concluding remarks gained

from the present work, followed by recommendations for future work.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Chapter 2

LITERATURE SURVEY *

2.1 Introduction

Heat transfer by natural convection is frequently encountered in our

environment and in many engineering applications. Natural convection

arises from the buoyancy force induced by density differences in a fluid. ‘

Laminar free convection along horizontal, inclined and vertical plates with
uniform surface temperature or uniform heat flux has been extensively

studied.

Rapidly growing acceptance of solar energy as the means of heat-
ing and cooling has further stimulated research in the area of thermo-
gravitational flows in open ended cavities and parallel wall channel con-
figuration that simulates passive solar systems such as the Trombe wall.
Nayak [1] compared the performance of two types of thermal storage wall,
namely Transwall and Trombe wall. Both of them were located directly
behind the south facing glazing of a wall.

Most of the previous work related to Trombe wall channel flow can
be grouped into two major categories; the first involves numerical solu-

tion for the governing equations to predict the temperature and velocity
H

7
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profiles with 1sothermal and constant wall heat fiux conditions.

The second one is involving the analytical solutions of the governing
equations using the boundary conditions available to predict the flow rate
and heat transfer rate.

There are also experimental investigations on natural convection froﬁ
vertical, inclined, and horizontal surfaces, covering both laminar and tur-
' bulent regimes under either a constant surface heat flux condition. How-
ever, these analytical and experimental studies were éonducted under the
situations of uniform thermal boundary conditions.

The aim of this chapter is to'survey some of the important works
carried out to predict the hydrodynamic and thermal characteristics of

convection between parallel plates with more emphasis on those related

to Trombe wall.

REA L N I Y
:\ 1;; “",‘q.. g
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2.2 Numerical Studies

One might say that for most natural convection flow of practical
interest, a complete analytical solution is not available and one has to
depend on various numerical techniques to obtain the desired results.
Over the past few years, with theincreased availability 0{: fast computers,

very large number of numerical techniques and procedures have been

developed and employed for various diverse natural convection preblems.

Several numerical methods have been carried out to study the Jaminar
natural convection and mixed natural and forced convection in a zvertical
channel with various wall conditions. Akbari and Borgers [2] investigated

free lJaminar heat transfer between the channel surfaces of Trombe wall.

They considered in their study the velocity profiles normal and parallel_

to the direction of fluid flow, the pressure drop due to flow acceleration

at the channel entrance, and the effect of dissimilar but uniform chan-

nel surface temperature for a wide range of flow rates and temperatures,

A finite difference procedure was used to solve'f.l.#e governing equations
- in dimensionless form using air as the working fluid. ' After comparison
with availab-le experimecntal data y results have been reduced and several
correlations were develéped to enable important performance character-
istics to be estimated given the channel thickness height, and surface

temperature. 390867

A numerical prediction for turbulent free convection from vertical sur-

faces was studied by Mason and Seban [3]. They showed that the results

can be obtained by means of suitable modifications of a program of the

)
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Patankar-Spalding procedure for predicting the results. The related re-

sults compared well with the experimentnl ones.

An analysis was performed by Chen [4] to study the flow and heat
transfer characteristics of laminar free convection in boundary layer flows
from horizontal, inclined, and vertical flat plates in which the wall tem-
perature T,(z) or the'surface heat flux gu(z) varies as the power of the

- axial coordinate in the form:

Tw(z) =T, + Nz

or:
Jur (E) = bz™

The govérning equations were first cast into a dimensionless form by a
non-similar transformation and the resulting equations were solved by
a finite difference scheme. They also found that, both local wall shear
stress and the local surface heat transfer rate increased with the increase
of both the angle of inclination from the horizontal increased and with
the local Grashof number. New correlation equations for the local and
average Nusselt number were obtained for the special cases of uniform
wall temperature and uniform heat flux. The results were compared with
available experimental data.

Borgeré and Akbari [5] studied the free conve;ctive turbulent flow
within the Trombe wall channel. They assumed that, the initial flow

remanins laminar until a combination of geometry, temperature, and flow

H
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rate conditions reach a pre-defined level. Also they.predicted the tur-

bulent ﬂow_chamctcristics Ly a mixing length model which incorporates
empirical parameters used in the literature. The equations were solved
“using a forward marching line by line implicit finite difference technique
permitting iterations on each new line.

The two dimensional, steady; combined forced and natural convec-

'tion in a vertical channel was investigated for the laminar regime by

Chaturredi et al [6). They used both a finite difference method using

upwind differencing for the nonlinear convective terms, and central dif-
ferencing for the second order derivative to solve the governing differ-
ential equations for the mass, momentum, and energy balances. The
solution was obtained for stream function, vorticity, and temperature as
the dependent variables by an iterative technique known as successive
substitution with over-relaxation (SOR). Chaturredi et al showed that
at any lowlReynolds Number, the stream function, .an‘d isotherms were
qualitatively similar to those reported for the natural convection in rect-
angular slots.

Jubran et al [7] investigated the convective laminar heat transfer be-
tween the channel surfaces of a Trombe wall. Velocity profiles, tem-
| perature profiles, and pressure defect had been in\;estigdted when the

temperature of the masonry wall is not uniform but of the form
Tu(z) =T, + az"

They concluded that the average Nusselt Number increases as the rate of

heat gained by the fluid at the exit was increased, i.e as n was increased.

]

1
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L] L)
The governing equations were first transformed into dimensionless form

and then solved using the finite difference technique. The governing .

equations were also solved for different values of n, and hence, for different
temperature élr.istributions at the wall.

Abd Rabbo and Adam [8] developed a mathematical model based
upon the solution of heat transfer equations by finite differences method
under unsteady state heat flow to optimize the performance of Trombe
wall under Mosul wea;her conditions. The analysis was carried out for
south facing walls and the effect of various materials and th‘icknesses was
studied. The thermal behaviour of conventional wall was compared with
Trombe wall under the same mean environmental tempef;lture and global
solar radiation for an average day in January for Iraqi winter season. Abd
Rabbo and Adam showed that the wall of 20cm thickness was the most
suitable in winter and summer, and the.temperature of the inside surface
for Trombe wall was 17 % higher than that for a conventional wall.

Shai and Barn;a [9] conducted an analysis of mixed convection with
uniform heat flux. They evaluated the heat transfer coefficient in an
assisting mixed convection, and in an apposing mixed conveetion. The
analysis assumed that the hydrodynamic and therr_ri:%l boundary layers
‘Were‘-'the same, and the. velocity profile within the boundary layer was a
superposition of pure forced and pure natural convection.

A numerical investigation was made of laminar mixed convection of

air in vertical channel by Habchi and Acharya [10]. The thermal bound-
ary condition considered was symmetric heating, where both plates were

heated and asymmetric heating, where one plate was heated and the
'
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other one was adiabatic. Habeht and Acharya maicated that the Nusselt
Number attained its maximum walue near the inlet of the channel and
increased with decreasing Gr/Re® values. The differential equations were
ééived by using a Pla‘tankar-Spnlding type of finite difference procedure.
This implicit finite difference scheme was a marching method that begins
at the channel inlet and proceeded step by step until the channel exit
" was reached.

Badr [11] considered a theoretical study of lam.i.nar mixed convection
for horizo_ﬁi{;al cylinder in a cross stream. Badr’s study was based on the
solution of ‘t.he Navier Stokes and energy equations for two dimensior;al
flow of a Boussinesq fluid. Badr obtained inhis work the steady solution
of the governing equations through studying the time development of
the velocity and thermal boundary layers around the cylinder starting
from certain initial conditions. This was achieved through integrating
the governing equations with time until reaching the fully velocity and
- temperature fields. The method of series truncation developed by Badr
and Dennis [12] was applied to study the asymmetrical flow field around
a rotating cylinder was adopted for tackling this problem.

Habchi and Acharya [13] investigated the laminar mixed convection of
air in a vertical channel containing a partial rectangular blockage on one
of the channel wall. 'i‘heir results indicated that at low values of Gr/Re?

the maximum’ velocity occurs near the wall, and the Nusselt Number

in the blockage and the pre-blockage regions increased with decreasing
Gr/Re? values. The differential equations were solved using an implicit, el-

liptic finite difference procedure called SIMPLER. (Semi Implicit Method

3
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for Pressure Linked Equations, Revised). In this method the domain was.

subdivided into a number of control volumes, each associated with a grid
point, and the governing differv;utial equation was integrated over each
control volume resulting in a system of algebraic equations that can be
solved by an iterative technique. They used an approximate exponential
profile to perform the integration in each coordinate direction.

Kuiken [14] considered a class of backward free clonlvective boundary
layer similarity solutions. Kuiken showed that these boundary layers
can be produced along slender downward projecting slabs of prescribed
thickness radiatiﬁn, which were infinitely long. It was pointed out in this
‘study that these solutions can be used to describe free convective flows
along vertical fins.

A numerical solution scheme for local non-similarity boundary layer
analysis was developed by Minkowycz and Sparrow [15]. In this method
the central task was the numerical solution of a set of simuitaneous ordi-
nary differential equatio-ns. The numerical solution scileme described in
this study was able to deal with the multi-equation system encountered
in local non-similarity boundary .layer analysis. It employed integrated
forms of the governing differential equations. They selected a natural
convection problem on an isothermal vertical plate in the presence of
surface mass transfer to illustrate their solution method.

Sparrow and Gregg [16] investigated the role of buoyancy force induced
by the density gradient in the combined forced and natural convection
flow problems. They established a quantitative criterion for determining

the situations in which the buoyancy force may be ignored. The isotherms

¥
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and streamline patterns of flow produced by the interaction of buoyancy

and shear forcés in a vertical slot across which a constant temperature
difference is maintained was determined by Elder [17]. Deval Davis et al
[18] obtained the numerical solution of the governing equations subject
to the Boussinesq approximation.

An analysis of convective heat transfer between vertical plates with

one plate isothermally heated and the other insulated was performed by

Miyatake and Fuji [19]. They used a forward marching implicit method

to solve the nonlinear partial differential equations. Bodia and Ostterle

[20] investigated the development of natural convection in a fluid between
heated vertical plates for the conditions where the wall is not sufficiently
high, and the flow is not fully developed at the exit. Chung and Thomp-
son [21] and Ramakrishman [22] have solved the governing Navier Stokes
equations for similar problem using the finite element technique.

Hasan and Eichorn [23]analyzed the effect of the angle of inclination
on free convection flow and heat transfer from an isothermal surface by
" the local non-similarity method of solution. Numerical solutions of the
equations were obtained for Prandtl Numbers of 0.1,0.7,6.0 and 275. Re-
sults showed an appreciable effect of inclinatioﬁ parameter on the velocity
field and practically none on the temperature field except for very small
values of the Prandtl Numbers. In the limiting case of very large Prandtl
Number, inclination parameter has no effect either on the velocity or on
the temperature ﬁeid.

The effects of buoyancy on upward-flow laminar convection in the en-

trance region between inclined parallel plates were studied numerically by

i
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Naito and Nagano [24]. Three thermal conditions of parallel plates were
considered: lower wall heated and upper wall insulated; vise versa; and
both walls heated equally. Solutions for these three cases were obtained.
They showed that th(i developing upward-flow and thermal field in the
entry region were affected by buoyancy in terms of the various angles of
parallel plates. They developed correlations for skin-friction coefficient
"and local Nusselt number at an arbitrarjf channel inclination. The di-
mensionless governing equations of continuity, momentum, and energy
were simplified us;ng the usual Boussinesq approximation and then ap-
proximated by finite differenée equations using a central difference form.

Raithby et al [25] presented an analysis which predicts the heat trans-
fer across fluid layers bounded laterally by vertical isothermal surface and
adiabatic surfaces on the top and the bottom. They predicted the vértical
temperature distribution in the core of the cavity. Also they compared
average Nusselt number and temperature distribution with experimen-
tal data for aspect ratios greater than 5 and a good asgreement between
analysis and experiment was found.

Faiman et al [26] developed a numerical model which describes the
temperature distribution as a function of time within the storage elements
of a Rotating Prism Solar storage wall. The model was tested against
experimental data obtained from =a full-scale Rotating Prism wall, and

found to reproduce the measured temperature extensively well. The
model was used to predict the performance of such devices in various
kinds of climate and to compare this performance with that expected

from a non-vented Trombe wall of standard design. The Rotating Prism

}
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wall was found to provide considerably more useful energy than a non-

A

vented Trombe wall.

A computer simulationA analysis of possible system designs was em-
ployed by Balcomb et al [27] to aid in the selection of components of
the wall. Their results indicated that a performance comparable to that
of a conventional active solar heating system should be achievable in an
optimized design of passive solar heating. They showed that movable
insulation of the window increased the performance when used in con-
junction with a conventional heating system, temperature variations in
the building can be reduced to those 'normally experienced.

Sebald [28] discussed in detail mathematical aspects of thermal net-

work (TN) models. Because of its efficiency in large controlled TN models

emphasis was given to forward differencing (FD). He analyzed computa-

tional considerations and accuracy. FD in TN models was shown to be
accurate and efficient in complex buildings. Sebald showed that struc-
tural information contained in TN models was easily extracted as a bonus

without simulation.

17

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



2.3. Analytical Studies

The solution of natural convection and mixed and forced convection in
a Trombe wall channel using analytical means has received little attention

in the past.

Transient response of the Trombe wall applicable to passive solar heat-
ing systems has been analyzed by Shou-Shing and Jinn-Tsong [29]. The
unsteady temperature distribution and heat loss history of a Trombe wall,
applicable to passive solar heating, were obtained from both analytical
and numerical approaches. A one dimensional exact solution was ob-
tained by the Duhamel superposition technique for the time dependent
boundary. The results were compared with numerical ones calculated

a

through an implicit finite difference technique.

“

Yao {30] investigated free and forced convection in the entry region

of a heated vertical channel. He studied the conditions of constant wall

temperature and constant wall heat flux. Different axial length scales

were revealed by the analytical solution. The solution indicated that
natural convection eventually becomes the dominant heat transfer mode
if Gr > Re for constant wall temperature and Gr? > Re for constant wali
heat flux. Local Nusselt Numbers had been successfully correlated by
tfle length scale deduced from the analytical solution. The solution of
the inviscid flow was obtained by expanding the dependent variables in
asymptotic series. The resulting equations were numerically integrated

by using fast Fourier Transformation.

An analytical exact solution using Laplace Transformation to Graetz

]
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problem for laminar fluids in circular ducts was presented by Mansour
[31]. The results obtained from this sowution were compared with previ-
ously published experimental, analytical and numerical works.

Some unsteady heat transfer problems solved by a simple similarity
transformation were examined by Ruckenstein [32]. He used a similarity

transformation for solving equations of the form:

aT 9T _  BudL _ ,8'T
o tu(x,T)5; Yocay = Xyl

Several unsteady heat transfer problems have been solved using the po-
tential flow velocity.

Nayak et al [33] considered the analysis of passive heating concepts.
They developed a mathematical model based on Fourier series solution
of the heat conduction equation to analyze the thermal performance of
some typical passive heating concepts, namely Trombe wall, water wall
and solarium. Using this model they obtained an analytical expression
for the time dependent heat flux entering into the living space, which
was assumed to be at a constant temperature corresponding to an air
conditional room.

Chen and Tzuoo [34] studied the vortex instability characteristics of

laminar free convection flow over horizontal and inclined isothermal sur- -

faces analytically by linear theory. As a prelude to their analysis, the

effect of the angle of inclination on the main flow and thermal fields were

re-examined by a new approach. They found that as the angle of incli-

nation increases the rate of surface heat transfer increases, whereas the

susceptibility of the flow to the vortex mode of instability decreases. The

]
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system of equations for the main flow and thetmal fields was solved by
a finite difference -cheme. The stability problem was solved by a fourth
order Rﬁnge Kutta numerical integration scheme. They compared their
results with available wave instability known results.

Chellappa and Singh [35] presented an analysis for deriving in a sys-
tematic way all possible similarity formulations for linearly viscous, free
convection boundary layer flow over a semi infinite horizontal plate.
These formulations were derived on the basis of the constraints imposed
by similarity conditions of the problem. They concluded that there are in
all four possible cases of similarity formulations for this boundary layer

problem. Two of these possible cases deal with unsteady flow conditions;

and the other two steady cases deal with more general forms for plate

temperature distributions.

Lu et al [36] derived- theoretical equations for calculating the absorbed
.solar radiation of a direct-gain passively-heated system with transparent
glazing by using the net radiation method. A more rational model for
simulating the thermal processes of a direct-gain system was worked out.
The test cell validation was done and it showed good agreement between
the predicted and measured values.

Zrikemmand Bilgen [37] studied theoretically the transfer of solar l'{.ldi-
ation in a composite Trombe wall solar collector system. The composite

system consists of a glazing, a massive wall, and an insulating wall put

in contact with massive wall and with another glazing between massive

and insulating walls. The theoretical results indicated that the composite

system can indeed perform better in cold and/or cloudy climates than

20
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the reference system and that optimum geometrical parameters could be
determined depending on the dwelling type and climatic conditions of
the area. They conclt.uled that the new system had a reduced massive
wall thickness that was a desira}ile feature for light-weight constructions.

Mansour et al {38] found out an approximate analytical solution to con-
vective heat transfer flow. The results obtained in that solution showed
" a good agreement compared with the numericai and experimental pub-
lished data. This work differs from the present work in the form of the
guessed function and in using the hypergeometric functions for their so-

lutions.

21
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2.4 Experimental Studies

There are a few works that deal with experimental studies on nat-
ural convection, mixed natural and forced convec_tion in a Trombe wall
channel.

An experimental investigation on turbulent natural convection bound-
. ary layers has been conducted with water on a vertical plate of constant
heat flux by Vliet and Lu [39]. They presented local heat transfer data for
laminar, transition and turbulent natural convection with the emphasis

on the turbulent basis.

Sparrow and Bahram [40] investigated experimentally the natural con-
vection heat transfer from face to face surface of parallel, square vertical
plates. The experiments encompassed three types of hydrodynamic con-
ditions along the laterral edge: (1) fully open to ambient; (2) blockage of
one of the edge gaps; (3) blockage along both of the edge gaps. Mea-

surements, were made for the ten inter plate spacings. They used a

mass transfer measurement technique instead of radiation effects, and

concluded that the present data for the single vertical plate are in agree-

ment with prior experiments and with other published correlations.

Anezov [41] developed a procedure which made it possible to compare
values of the efficiency of a.solar heater and the replacement factor of
various heating systems in their design stage to find out the effect of
one or another parameter separately on the system’s overall indices and
then to optimize the system with respect to all the parameters. He

studied particular cases: a solar-heating system (insulation heating) and

]
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a traditional Trombe-Michel passive system. In this system there are no
heating devices inside the room, and the heat-transfer medium circulates
between the solar heater and the space being heated by means of natural
convection.
The performance of active and passive rockbins were compared in
Albuquerque, NM, Santa Maria, CA, and Madison, WI by Sebald and
..Vered [42]). They assumed the basic house to contain both Trombe wall
and direct gain which in turn were assumed to be optimally sized and
controlled for each weather season. It was demonstrated that, provided
charging was done from the Trombe wall, rockbins could be used to ad-
vantage in reducing the early morning auxiliary energy consumption peak
common to passive houses with night setback thermostats. They ana-
lyzed the performance sensitivity to rockbin configuration and to control
strategies for charging and discharging. They included also the effects of

fan energy.

Casperson [43] presented an experimental data on the thermo-circulation

in a variable geometry Trombe wall for a full-scale test facility located
in Idaho Springs, Colarado. Anemometry data representing veloci‘ty and
temperature profiles in the Trombe wall air gap were obtained over a
five month period from Oct. to March of the {(1980-1981) heating sea-
son. They collected temperature and solar radiation data. These data
sets completely described an experimental control volume on the east-
west vertical center-plane of the Trombe wall . They collected data for
four different wall air gap widths in combination with three different in-

let/outlet vent cross-sectional flow areas. Wall gap widths of 2,4,6 and 8

H
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inches where investigated. They collected additional thermocouples Gata
in the air and in the inlet and outlet vents to the Trombe wall.

An experimental investigation was carried out on the hydrodynamics
of turbulent free-con;rection boundary Iéyer at a vertical film of ethyl
alcohol closed at both ends by Kutateladze et al [44]. They presented
longitudinal .component profiles of the mean velocity vector and fluctu-
ation rate of the same velocity component. The existence was shown of
a quasi-stationary wall layer in the turbulent boundary layer at a vér-
tical plate on the basis of the present data and experimental results of
~other authors, also the thickness and maximum velocity which satisfy the

condition

REIPTI/Z = (Um0261 )/((Va)llz'

It was found experimentally that the temperature gradient % = const

:ﬂong the middle of the vertical cross-section in the central part of the
film.

Experimental results of a lattice solar wall were described by Yan et
al [45]. Comparison tests had shown that the lattice solar wall performed
better than the traditional solar wall. The lattice solar wall wns aesthet-
ically pleasing, and offered a saving in construction materials. It was
shown that its superior thermal properties were due to the following: a

high-heat retention capability in the course of solar radiation; the weak
radiative heat transfer because of the losses; and low reflective losses on
incident sunlight.

The operating characteristics of a Trombe wall collection-storage so-

¢
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lar system were measured for conditioning validation air for a furrowing
house by Siebénmorgen et al [46]. Two types of planner reflector along
with the condition of no reflectors were alternately plaéed horizontally
in front of the vertical collector. They used a linear regression analysis
to determine the best set of independent climatic and system variables
to describe the daily heat gain of the system for each reflector use. They
"found that using long-term records of solar radiation data in conjunc-
tion with -the regression analysis, pay-back periods of 7 to 8 years were
attainable with this system.

Yin et al [47] descrii)ed an experimental investigation concerning the
natural convection flow pattern's which or;cur in the annular space be-
tween two concentric isothermal spheres, with the inner one being hotter.
The diameter ratios ranged from 1.09 to 2.17. The convicting fluids were
air and water, with Grashof numbers in the range of 1.7 x 10% to 1.5 x 107.
They observed that the several types of flow patterns were correlated
with previously published temperature profiles and were categorized in
terms of steady and unsteady regimes.

Arnold et al [48] carried out an experimental investigation of steady
natural convection héat transfer for finite rectangular regions. They mea-
sured the effect of angle of inclination on he:at‘transfer across rectangular
regions of several aspects ratios for Rayliegh numbers between 10° and
10°. They examined the situations for which the angle of inclination var-
jed from O deg. (heated from above) to 180 deg. (heated from below)
with aspect ratios of one, three, six, and twelve. They compared their

results with past theoretical works and a simple scaling law derived which

]
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is valid for angles of welination from 0 to 90 deg. (vertical).

Maldonado et al [49] adapted traditional Portugues building forms to
create a relatively massive two-storage house in Northern Portugal, which
incorporated direct solar gain, Trombe Wall and water wall systems. They
discussed two year results and they concluded that exiting simulation
methods under-predict the performance of massive structure.

Sebald et al [50] analyzed Trombe wall performance for a variety of
control strategies in Albuquerque, New Mexico, Santa Maria, California
and Madison Wisconsin. Both the presence and absence of backup energy
were considered. They performed the analysis using hourly simulations
on Solmet weather data in a thermal network model. They computed
the sénsitivity of the résults to wall thickness and size, building azimuth
and house insulation levels. They found that proper controls to reduce
backup requirements as much as 50%. In the absence of backup energy,
proper controls on thin walls provided better perfofmance than standard
walls of double thickness.

An annual simplified method has been developed by Zrikem and Bil-
gen [51]. They used the 42 years of simulation carried out with the
hourly model Pasop!-20. They considered three Canadian cities, six load
to collector ratio, two types of collector surface, four wall thicknesses,
three wall thermal conductivities, and all other necessary parameters of
a reference design. They obtained an annual cérrelation for each type
of surface. These results were compared with the hourly and monthly
models. |

Sharma et al {52] proposed and examined a modified form of Trombe

H
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resistance mate-

wall in which the glazing had been replaced by weather

rial for winter henting and summer cooling in mixed climate conditions

characterized by a mild winter and a relatively harsh dry summer. Their

experimental results indicated the potential applications of such passive

building architecture for mixed climate conditions.
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Chapter 3

PHYSICAL MODEL AND
ANALYSIS

3.1 Introduction

In the present chapter the physical model for a Trombe wall and
the mathematical anslysis used to solve the governing equations will be
discussed.

First of all, the physical model of the problem for both steady and
unsteady conditions are presented. The governing equations with their
boundary conditions are simplified with certain assumptions. Using a
transformations for.these equations they are cast into a suitable form
and the partial differential equations are transformed into ordinary dif-
ferential equations. A new technique is used to solve these equations
analytically and the results are to be compared with numerical and ex-

i)erimental published data.

3.2 Physical model and mathematical formula-
tion

The physical model considered in this study is illustrated in Fig.(3-1).

]
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Yy
Fig.3-1 Schematic of the system

The exterior wall, AB, is maintained at a temperature T, which may
be constant or varying as the power law. The interior- wall, CD, has a
lower temperature. The fluid entering from the lower horizontal channel
is heated by absorbing energy and circulating through the channel.

For the determination of the velocity profiles and temperature fields
in a natural convection hLeat transfer process, the governing equations

are:

¢ continuity

‘—§+pv.1?:o (3.1)
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¢ momentum

fl

PPl w FogP 4 u TV uf3 v (9.7) (3.2)

* encrgy

Dr : DpP
pCp*b'-;_— = VkVT-}'Q‘*‘ﬂTE‘*‘P@u (3:3)

The basic force arises from the temperature difference in natural con-
vection flows. The temperature variation results in a difference in density,

which in turn results in a buoym.my force due to the presénce of the body
force field.

The temperature field is linked with the flow and the governing equa-
tions are coupled through the variation of the density p. The governing
equations have to be solved simultaneously to give the distributions of

the velocity and temperature fields, in space and time.
3.2.1 Approximations

The following approximations are made to simplify the governing equa-

tions.

1. Boussinesq approximation

One could say that the governing equations for natural convection
flow are of the types of coupled elliptic partial differential equations
=‘md are, therefore, of considerable complexity. The major problems
in obtaining a solution to these e;iuations lie_in the inevitable vari-
ation of density p wi.tl_i_" tcxnperati]re, or concentration, and in their
partial, elliptic nature.l The question of demsity variation is con-

sidered first and to do that we have to examine the magnitude and

i
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nature of the driving force. The density difference may be estimated

as follows[53] :

pa = p = pB(T — T} (349

or:

p = pa(l — AT —T.)) ' (3.5)

!

With the Boussinesq approximations, the governing equations for

constant properties become:

e continuity

e momentum

8v a8V . ‘ L
pluge +v2- | = —EgBp(T —T) = VPV (37)
Oz Oy

* energy

oT T o pp
PCp (‘UE;—F‘UE;') —kv T+Q+BTE_T—+”'(D” (38)

where,

T, - ambient temperature
P; - pressure due to the motion of the fluid

-

€ - unit vector in the direction of the gravitational field

For a vertical surface, with z along the .surfacg and in the directioln
opposite to gravity, é'= —i, where 1 is unitrif.ector in the direction
of z. The buoyancy term would appear only in the z component of
the momentum equation. For an inclined surface, € would give rise

to components in all directions.

?
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2« Doundary-Layer Approximation,

The second approximation made in the governing equations (3.6 — 3.3)
pertains to the extensively employed boundary-layer flow assumptio;l.
The fluid immediately adjacent to the surface is assumed to have no
slip condition. The convective and diffusion components of energy and
" momentum transport are of the same order of magnitude in the boundary

layer and, hence, the complete equations have to be considered. The

pressure in the region beyond the boundary-layer is hydrostatic and the.

velocity outside the layer is zero. Using the order of magnitude analysis
we can simplify these equations. The resulting boundary-layer equations

governing the flow can be written for constant fluid properties as follows:

e continuity

Ju v
3a + By 0 (3.9)
e momentum
Ju Gu 18, 0u
ué— +‘U6—I; =gA8(T —T,) + —5—(]1%) _(3.10)
* energy
oT orT . apr, ouw, 0, 0T
PCp(ugy Tvg,) =9 +ATu g +#(5§) +5§( 3y (3.11)

Finally for steady, laminar boundéry-layer neglecting the viscous
dissipation and pressure term and with no heat generation the gov-

erning equations with their boundary conditions are:

¢ continuity.

du Ov

— 4 =0 (3.12)

dz  dy
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momentum

du  Ou du
us -|—v6—y- =g8(T - T,) + VEF

energy
u.gz + va—T = a(-?—z—j:-
Oz dy  Oy?

The boundary conditions are:

y=0: u=0,
Y=Yo: u=0

(3.13)

(3.14)

(3.15)

For unsteady, laminar boundary layer the governing equations

are given by:

continuity.
=0
momentum
g;+ug%+vg-§ ==g,B(T-T.,)+ug;;
energy

or or 6T o*T
hdall P = e

ar + "oz Oy dy?
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(3.17)

(3.18)
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3.3 Similarity VariaBle Method

In this section the similarity transformations for the solution of con-

vection problems are introduced.

The main problem in solving equations (3.12—-3.14.) lies in their partial
differential nature. Both the velocity components (x) and (v) and the
" temperature (T) are functions of z and y. If, however, the depén-_dence of
z and y can be combined into a simple variable 7 the partial differential
equations are transformed into a set of ordinary differential equations.
Any reduction in the number of independént variables of a problem is
an important simplification toward the solution of the problem, va.rllet}ier

the problem is to be solved analytically or numerically.

The variable 5 is known to be the similarity variable of equations (3.12-
3.14), the corresponding distri_butions being similar at all locations along
the surface, when given in terms of 7. In terms of n the reduction of
equations (3.12-3.14) to ordinary differential eqﬁations is a similarity trans-
formation, and the solution of these equations is a sirﬁilarity solution. This
soluf,ion. has the property that two temperature profiles located at dil-
ferent z differ only by an m-dependént scéle factor in y. That is, all
femperature profiles become identical in a plot for /8, versus 7. It is

from this fact that we get the name similarity.

The vertical wall under consideration is located at y=0, the coordinate
¥ being indicative of the position in the boundary layer away from the
wall surface. The wall is at temperature 7, which may be a function

of z, the vertical position along the surface, extending upwards from the
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]ﬁﬂ(liﬂg edse, z=0. The tefnperature of air in the channel, T,.

A stream function v is defined so that it satisfies the continuity equa-

tion,
oy G
I = 3.19
u Oy and v Br ( )
The variation of the wall temperature T, may be expressed as : ;
Ty = T, + A=)
or:
Tw —Ta = Alz) (3.20)

From the magnitude analysis of the governing equations, it was found

that boundary layer thickness § is propertional to «/+/Gr., where

— gﬁr’s(Tw - Ta)

v?

(3.21)

Gr,

a similarity variable  may be expected from a combination of z and y,
if 77 1s take‘:-l proportional to y/§. In natural convection, 7 ~ (yo/Grz)/z
may.be expected to give the desired similarity solution [55].

Now, the similarity variable 7 and a non-dimensional stream function
f, which must be dependent only on 75 for success of thé similarity method,

may be expressed as:

n(z,y) = yC(z)
. (3.22)
| b = vD(=)f(n)
The temperature T is also generalized for the similarity solution, so that

the generalized temperature 8 is a function of 7 alone:

_T-T,

8
To—Ta

(3.23)
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Our problem now is to determine the unknown functions G($] and
D(z), so that the temperature § and the non-dimensional stream function
f depend only on 5. Using the above expressions (3.19 — 3.23) , we can

find each term of the equations (3.12 — 3.14):
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iy

dy

C(z)vD(z)f

i
[2F

vDIf' + yC:vD(a:)f'

oz Oz arrax

du 8y 31.(@
ayaz_‘_

vCiDf"

8 (8uyén
on\on/dy

Vcs fo-"

A+ AZ

A0+ A8 yC.

o8 én
&n By

!
s

vf(C.D + CD,) + vyCC.Df"

g
P
+
72
31

}

/

(3.24)

By substituting these equations into equations (3.12 — 3.14) we will get

the following ordinary differential equations:

L

dif fusion

it

gﬁ

+ DC?y '’

—O

thermal buoancy

"

g

——

-
convection—terms

DA

dif fusion ™

38

-
thermal —convection

(3.25)

(3.26)
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Where the primes indicate the derivatives with respect to n and subscripts
with respect to the subscripted variable. The possibility of a similarity
solution now depends on the groups of A ,C, and D, obtained above, being
independent of x and y. The boundary conditions must also depend only
on 1.

Similarity would d“emand that the parametérs associated with the var-
ious terms be constant or functions of 7 alone. Since y does not appear in

any of the groups, making it impossible to obtain 7 from them and these

groups should be constants, the result is :
A

boT = const
%‘L = const
o f (3.27)
= = const
DA
=LK —
ar = const )

The required = dependence of A, C and D may be determined which

would satisfy equation (3.27).

We will consider two cases corresponding to the wall temperature:

1. A Constant Wall Temperature

T, —-T, = const

A(z) = const (3.28)

Therefore, only three conditions have to be satisfied from equation
(3.27) , which are:
DC?® = const = M,

D
= = const = M,
D—g,—* = const = M,
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The terms of equations (3.12 — 3.14} can be estimated as follows:
: w = La ' 1' )
U = 4\'!(9'61‘41‘ )zf:cz
w = ia 2 ~-L =L ‘_—-ﬂ:‘:—d—_
—y = 3’)\4/ﬂ£402_T1 fzTi—yz i f \‘/(QBT,; Laly

g—: = 25y (gﬁ T‘:'Tﬂ 2f - y:n‘ni ,'/(yﬂ T“;"T'f ) .
% = 4 4 (gﬂ!T-..;—Tnl)s_:Tfnm&

] (3.32)
% p— EIG(T'UV— ulf ‘

_a_ﬁ —_ 1 —% 4 QS!Tw—qu
oz - —4y$ 42

a_ﬂ; — m-—& 4 EH!T‘"_T"IB'

By v 43

._8_3_9_ — m—‘:' 1 (QﬁgTw—Talg"

PR )

By substituting in equations (3.12 — 3.14) the above terms we get
[54]:

F r3ff —2Af P +8=0 (3.33)

§' +3Prfo =0 (3.34)

The boundary conditions can be estimated using equation (3.32

) by substituting for f and f as follows:

4

_ @
4 ‘1 f(lﬁ&u_"rﬂ_l):zli'

F= —u+yz'%f' 4\/(9_(______)_:5 T":_T“ by

3v vﬂ%'—mfa:_ 4

From the above equations and equation (3.15) one could get that at

n=0u=0then f =0 and when v = 0 the stream function f =0 .
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9. The Temperature of wall is a function of 2

Under this condition the temperature wall distribution is in the

following form:

T, — T, = A(z)

The additional constraint of %’—(‘f - const must be satisfied. We will

consider the case when A(z) = Nz" i.e the wall temperature varies

" in terms of a power law form. As was shown in the isothermal wall

condition, for the power law variation we can obtain that:

C(z) ~ -0/ and D(z) ~ Z{nt3l/a

And in terms of Grashof number these can be expressed as:

(3.35)
v = 4vEe" )
and
1 4gB=*(Tw — Ta)
C(z) = m\/ ™ ~ (3.36)

D(z) = 4\‘/9F = (f:z‘ L) (3.37)
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As defined above for velocity components u, and v will be as follows:

W Intd o
w = Y 3.%)2:1: i f )

—v =(n+ 32T vy fgz—f

+(n - Ve T oy (5P f

?" (211, + 2)1;3: T (402) f' s (338)

4(n - Doyz T YL )2

! Intl i
5y5=4v‘(fl%)3m v f

M

Ze = gp=f |
By substituting in equations (3.12 - 3.13) the above terms of equa-

tion (3.38) we get for the power law distribution :

£t OFf = An 4 (PP 40 =0 (3.39)
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The energy equation (3.14) may be transformed as follows:

8T . OT _ 3T | )
uan: - 3J aay

a8 dAT Q}_g
+v . T BM o = a3

4.V ( )2 % —La_l- n:by / 9
+4u f(4v1 :E) 42
—n+3m%“'u\‘/’4—9€f‘ﬁ%3’ e

~(n = D=2y J(Z o f B0 T (3.40)
— ‘p‘ﬁg— n;l 911

- 41/3

(n— D)Y(LP L™ fyd
—(n + 3)J(Lye™5" 16
—(n = D)Y(LP L™ Fye

+4dny) (gg)zmn_';lfig

8 + (n+3)Prff —d4nPrf =0 (3.41)

3. Unsteady Laminar Case

The governing equations for unsteady laminar boundary layer (3.16—
3.18) are first cast to a non-dimensionless form using the following di-

mensionless quantities which are defined according to the procedure
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indicated in [35):

;- (3.42)

G = g,GL’ET—T., )
o

H

- u,
U_ﬂ

where,

- stream function

- characteristic length
generalized Rayliegh number

- kinematic viscosity

- thermal diffusivity

- thermal coefficient of expansion

W N Qe
1

The resulting non-dimensionless equations are:

e continuity.

ou 8V
X + ¥ = 0 (3.43)

* momentum

o au U gB(T-T.)L a2y
a tUx +Vey = P + Pr

(3.44)
2
= PrG + PT'%-Y%
® energy
Gt + UGX + VGY = GYY (345)

45

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



VVIHI Hle l)Olln(l:ll‘y condittons:

Y = 0: )

o= 0

vy = 0

G = G,(X,t) (3.46)
Y = Yeo:

by, = 0

G =0

First of all we introduce a similarity variable 7 in the form:
nlz Yé(X,t) (3.47)
and the stream function ¢ and the temperature G are {35]
¥ = ¢:2(X, £)f(n) (3.48)

o) = - (3.49)

Equations (3.43 — 3.45) are reduced to :

e momentum

Prf" —dinf" —(dy +do)f +doff" ~(ds +du)(f'V + Prdsf = 0 (3.50)

* energy
8" — (din — dof)8 —(de + dvf )8 =0 (3.51)
where,
dy = m (3.52)
b1
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dy = 2 | (3.53)

- d’i’ (}52
dy = —u——'f”;"::)'“ (3.54)
_ {¢2)x |
d= S (3.55)
G
ds = — 3.56
¢13¢2 ( )
(Gu):
dg = ——— 3.57
qusl’ ' ' ( )
_ (Gw).\'¢2 :
dr = ———Gm¢1 (3.58)
The boundary conditions are:
7 = 0: )
flo =0
fO =0
6(0) = 1 ) (3.59)
n = Teo -
fne) = 0
(1) =0 |

The similarity formulations are possible if and only if d; through dy

are all constants.

$1 and ¢, had to be solved from the differential equations (3.52—3.55)
. Then equation (3.56) yields the surface temperature variation G,
for which a similarity solution is possible. Integrating equation (3.52)
yields:

¢ = (A(X) — 2d,8)"3 (3.60)
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And fromn (3.52) and (3.53) one may get:

ds = BLO((ALY) = 24,8)7 (6
where,
S=%,  di#0 :

But from equation (3.54) and (3.55) we get:

"y = C(1) | (3.62)
where,
€= g;‘, d3 # 0

Solving equation (3.54) using equation (3.62) one could obtain:

da(ﬁ— ].) !

P = | 0] X + D(t)}=+ (3.63)
And from equation (3.62) we get:
Py = o(t)[di((%g‘jﬂ,\< + D(t)]=r -(3.64)

Equations (3.61 — 3.64) can be solved if and only if :

b

e=§=-1

E(X) = C(t) = ds

r (3.65)
A(JXP) - _(%)JY
D(t) = —2dlt )
Finally ¢ and ¢, can be obtained as follows:
2d;, .. 1
b= (=2)X —2d,0)73 (3.66)
8
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2d
4’2 = ds("' d3

8

3 g

X - 2d,1) (3.67)

and from equation (3.36) the wall temperature distribution is ob-

tained:

2d,
ds

Gm = ds dg[— x\— — Zdl t]—l (368)

The constant which we have to keep as a parameter in the reduced

similarity equation is d;, where ds and d, may be assumed arbitrary.

d = —d;
d3s = —d4

The following equations are to be verified [35] :

Thus ﬁe have

ds = 2d; + 3d; | (3.69)
dy = 2dy + 3ds (3.70)
From equations (3.69) and (3.70) we get: |
ds = dy
ool
Taking d; = ~1 and ds = 1 the similarity equations for the flow may

now be written as follows:

Prf" —dygf" + ff" + Pré =0 (3.71)

0" ~(din =)' —(d - £ =0 (3.72)
The similarity formulation is not valid if the quantity (%} — 2d,t)

is non-positive. We.have to be careful to choose dy such that this

term will not be a negative.
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3.4 Method Of Solution

3.4.1 Constant Wall Temperature

The sets of equations that were derived in the foregoing para-,

"graphs are nonlinear ordinary differential equations to find their
.

solution we assume the solution for the stream function (f) as a

function of n which satisfy the boundary condition, that is:
at p=0 f=0

The simplest form of this guessed function is

fn) =oam | (3.73)

In the equations (3.33—3.34) we put instead of “(f)" in the second term

the guessed function and one of the derivatives “(f )?” is replaced

by the first derivative of the guessed function. Thus, the equations

(3.33 - 3.34) reduce to:
Frt3anf —2af +6=0 | : (3.74)

and
6" + 3aPrnd =0 (3.75)
This for the isothermal wall conditions, i.e T}, = const. Due to the in-

evitable coupling between the above equations we will solve equation

(3.75) first to get the temperature distribution, then it is substituted
in equation (3.74) to get the velocity profile, which relates with the

stream function.
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The solution of equation (3.75) can be obtained in terms of Kummer’s
function. It is more couvenient to find the solution in terms of this
function because it is cnsy to get the particular solution for the

nonhomogenous part of the momentum equation. Also to identify

the solutions for all equations. Kummer function is the solution of

the confluent hypergeometric equation [56].

: " _ n (a)nmn.
17 1a; by z] = ; b (3.76)
where, _
(@), = ala+1)}a+2)---{a-+n~—1)
() = Hb+1)(b+2)--(b+n—-1) (3.77)

n! = n(n—-1(n-2)---1

This series is absolutely convergent for all values of ¢,b, and z, real

or complex.
Wittaker was the first to study the following equation [57]:

d2y 1 k Z-—m
a-;;+(1+;+ s—)y =0 (3.78)

One of this equation’s solution.s is Wittaker’s function:
y = Mim(z) (3.79)
Wittaker’s function.is related to Kummer’s function as follows:
My (z) = m%+me-%=1F1[% +m.— ki1 + 2m; ] (3.80)
Equation (3.75) is of the form :

v +aozy + (a2 + b )y =0 | (3.81)
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with the solution in the form:

%" 1T , [ al '
¥ = — M et (27 (- ar)) (3.82)
v A A

Fi =

where,

L b =) (3.83)
\/(af, —day)

By comparison the coefficients of equation (3.75) with equation (3.31)

we get the following:

ay = JaPr 1
a; = 0
L | (3.84)
b; = 0
o= b

and the solution for £ is:

3aPr
2

2 _YaPr _2

e 11 [C;Jf‘l-[_li|li(

JaPr ,
2

Py+ Gy ()| (88)

Using the relations between confluent hypergeometric functions,
Equation (3.80) and the first theorem of Kummer of their own prop-

erties [56}, which states that:

e "1 1[e; b; 2] = 1Fi[b — a; b; —z] | - (3.86)
one could get:
1
8= Copl Fil3: %; —3"2})” 7] + Cy (3.87)

¢, and C; are arbitrary constants which can be determined using

the boundary conditions:

6(0) = 1 8(100) = 0
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Thus the constants are:

Cl - =t

1o 1F1 L1 200002 |

(3.88)
C, =1
The final solution for the temperature distribution 8 is:
1 13 3aPr ,
f=1- 1Pz = — 3.89
Y e Gig=— 7 (389)

Since the temperature distribution is known as a function of
7, Equation (3.74) will be a non-homogenous ordinary differential
equation, whose solution consists of two parts: the complementary

solution and the particular one for the non-homogenous part.

Equation (3.74) is first reduced to a second order differential equation

by using.the reduction of order method as follows:

2 3
R N O (3.90)
dn dn  dn? dn? dn?
Equation (3.74) reduces to:
P" 4+ 3amP ~2aP =0 (3.91)

The complementary solution for this equation P is obtained in the
same way as for the temperature solution. By comparison the coef-

ficients with these in equation (3.81) we get:

g = 3o
h = —2a (3.92)
k = —=%

[
]

and the solution for F, is then:

2 a2 ’ Ja " 3
P, = S0 (G (e? e (o .
=[Gy (5 ) + M () (3.93)

‘4
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which yields:

3a

1n l "; Ja "
2 2

P.= Csne'Tﬂ'lFI[q, ; n]+C PRk Va1

1 3a R
il (90

@y Ut

Integrating equation (3.94) with respect to 7 we get the stream func-

tion distribution as follows:

" 3n, 2 4 1 Jex " In_2 51 3a
S e 2 R B AR T B -5 V.o, 22
je=Cye 1F1[3,2, 2r1]+C47]e lFl[G,z, 7’} + Cs  (3.95)
Equation (3.95) reduces to :
51 1 3 3
fe= Calfl[—— - —-——nz] + Cu]lFl[ —;112] + Cs (3.96)

The derivative of equation (3.96) may be written as:

. . 13 3o, 1 1 3a,

The complete solution for the equation (3.74) is the sum of the
complementary solution and the particular one for the non-homogenous

part (f,). To find this solution we assume it in the form of a power

series so_iution:

fo=2 Ann™" (3.98)

and then we get the first, second and third derivatives as follows:

£ = T2o(m 4+ DA
fio= Taamm ot )Aanm
o= TR m(m+1)(m = 1) Annm

o4
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BV sbshibnt 1110 these terms i oqn'ltmn (3. 71) we get:
GAg - ‘2(1.’1|) W
+_Z:=l [(m +. 1)("7- + 2)(771. + 3)_“‘(,»".'.2)"}‘

o ; (3.99)
(3am(m + 1) = 2a{m + 1)) An 7™

G En R EE e -1

By comparing the coeflicient of both sides of equation (3.99) ene

could obtain the coefficient of the particular part of the solution

namely A,,.
‘For m = odd:
A = e |GV Gy (o5 ) - ﬁA(mm} . (3.100)

for m = even:

Am =10 (3.101)

where,

ES

il
3
AR

.

. B =(m+1)(m + 2)(m +3)

Finally the complete solution for the stream function and the

velocity distributions are:

a 3
f = GalF1[— %'%'—L132]+qu]lf'1[——§'§—— X2+ f+ G (3.102)
S T SN U W S
f = 5anCalFll5; 5i= o) + ClFll= 55 5= ] + f, (3.103)

’
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The boundary conditions related

‘J’] =

!

f =

to these equations are:

0: )

> (3.104)

foo

0

7’

The constants Cy,Cy and C; will be determined using these boundary

conditiens.

F(0)=Cy+Cs =0

F0)=Ci+f,=0

F (o) = Sane CalF1[L; 3; ~ %2 |

+O R -4 -2 14 F(7e) =0

b (3.105)

Solving the above equation (3.105) one could get:

03 — _'05 .
c, = —fp(O) > | 100
G, = Curillibi-erl ()

3T T T hane IF1Liki- g
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3.4.2 The Power Law Distribution For The wall Tem-
perature

By introducing the guessed function for the stream function
equation (3.73) for (f) and (f') into equations (3.39) and (3.41) they
yield:

f 4 Bonf —An+1)f +8=0 (3.107)

"

8" + (n + 3anPré — 4nPraf =0 (3.108)

The solution for equation (3.108) is obtained by comparison of the

coefficient of this equation with equation (3.81); therefore:

ag = (n+3)aPr )
ay = O
> (3.109)
b = —-4nPra
ko= _oni3
1(n+3) J

The solution for # in the form of Wittaker function is as follows:

ntd 2 r
§ —e 4ol L M o o213 o Pyl
= e T GICM gnas (B aPrn’)

‘ (3.110)
+C7ﬂf_4?:i:)'&('-"%gaprqz)]
This is reduced by using the relations of the hypergeometric
functions to the following form:

§ = CelF1[- 25, 3 -2 aPry?]

n+3!? 7

(3.111)
+CI P15 3 — 24 aPry’]
The boundary conditions related to this equation are:
600y = 1
| (3.112)
8(ne) = 0
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Thus:

1= Cq
0= LFI-2n b —m8aPryl (3.113)
+C; qmlfll;’{:;g), 3. ntdgProl

Solving the system of equations (3.113) one could get:

Cs =1

1F1[- -1 s ,!,-,— -:'L-CRPFT'] ]

Cr = Tt F[M=al Y, nd3open? |

In¥ajrat

The temperature distribution is obtained as follows:

§ = 1F1[-2 —*—aPrn ]

n+1; 21
3.115
1F1{- ..’;‘a:‘ﬁ-i?“”’"g“} [Frsys 33" o Pr] o

,-,m LR 2(“‘:3‘) 2 !&iiap,.,’z 1 2(n+3)r 2:

As we had defined 6 equation (3.111) is now a non-homogenous or-
dinary differential equation, whose solution consists of two compo-
nents: the complementary solution for the homogenous part and the

particular solution for the non-homogenous one.

To find the complementary part of the solution the honiogenous
part of equation (3.111) is first reduced to a second order ordinary

differential equation by using the reduction of order method as in

equation (3.90) then we get:
P’ +(n+3)anP ~2n+1)aP =0 (3.116)

By comparison the coefficient of this equation with equation (3.81)

’
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we get:

a, = (n+ 3 )
2y =N
) (3.117)
bt_ = —2(”. + 1)0!
Lk = o ndl
i(n+3) J
The solution of equation (3.116) is
P= 4 )
= G "PrIFIRE L ey’ ) (3.118)
+Cqpe~ "Fron’ |y Hnt2), 3. $3an?] |

n+3 ’2’

Integrating this equation we get the complementary solution of the

stream function namely f.:

f = CSUIFI[ n+3’2; r_t_-zﬂan2}
(3.119)
+091F1[ 5:(3%1:%)', 2, 'i—CXT}Z] + C]o

The first derivative of this function can be obtained using the

properties of the hypergeometric functions. Thus:

fo= ColP1[—mfl; 1, nd3 o]

(3.120)

+(3n + 5)anCyelF1{- — 242 op?]

2(n+3); 3

The particular part of solution is to be found in the same way as
for the case of constant wall temperature distribution as described
in section (3.3). The coefficient A,, are to be defined as follows:
form = even

A = 1

(m+1_)u((m—2)n+3m-—2)

(3.121)
(1) (=Z5) G k("2 Pra) — BAm.)]

where,
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i=12 nnd g = (m+ 1){(m + 2){m +3)

A = I

{m4+1)a({m-2}n4+3m—2)

(3.122)
[(_1)1(‘%:;;;;}'-“&) n+3apr) ﬁAm-{-Z]
where,
i= g and B = (m+ 1)(m +2)(m +3)

The complete solution for the stream function in the case of the -

power law temperature distribution is now:

f= ComlFi[-2tl;3 oo

n+3|2:

(3.123)

+C91F1[ 2{%%:;1 ”ﬁanzl'l'cw‘f‘fp

and the derivative of this function is:

f = GelFi[—ntl L _nddan?)

nt3t 2?

(3.124)

(3n + 5)anCelF1[— ;3 —nHon?) 4 f

2(n+3)’ 2!

To find out the constants Cs, Cp and Cj, we use the boundary

conditions corresponding to this case which are:

f(0)209+010:0 )
F0)=Cs+ f, =0
' ) (3.125)
S (neo) = (3n + 5)anu C91F1[z(n+3)5 2, ~rtiapl ]
+Cs1F1[— 2L, L 28?2 | 4 f(7,) =0 )
Solving equation (3.125) one could get:
Cg = —Ao )
Cn = = AFI[- 2L 2 and 14 £ (e )
? = (3n+5)ane IFI[E(I'-IT;'-‘;)-;%;— ’H—Hango] > (3126)
Chro = —r‘nlf'"ll-',‘l%:‘;:—%mm]’d;(ﬂm)
10 (3n+35)onem IFI[E(L'&"T)-;%, cmm] )

60

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



3.4.3 Unsteady Laminar Case

Equations (3.71) and (3.72) are to be solved in the same way ns-

the above two cases. The resulting equations after substituting the

guessed function equation (3.73) and its derivative in equations (3.71)

and (3.72) are:

e

= pl;(dl —a)pf +6=0 (3.127)
0" —(dy — )98 — (dy — )8 = 0 (3.128)

By comparing equation (3.128) with equation (3.81) we get:

o = —(d-)
[22] = 0
(3.129)
bl = _"(dl —_ CI)
o= ,
and the solution for 4 is:
(iL:ﬁl r} ! —(dy -«
f= #e T [CnM:-,l;(_@T—lTiz)
(3.130)
FCp M,y (Hm2d o)
This is reduced to:
3 1
0 = CunlF1[1; = (—‘5—@ 14 CralF1; L (= a)qz] (3.131)

2'3 9
Usmg the boundary conditions specified by equation (3. 59) one could

find the arbltr'u'y constants Cu and C,, thus:

Cip =1

an—

ﬂmlFl[l Y (EL:_“J.,,: ]

L
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The solution for the stream function is.obtained by solving equa-
tion (3.127). As was mentioned before first this equation is first
reduced to a second order ordinary differential equation using equa-
tion- (3.90). The complementary solution is found by comparing the

resulting equation with equation (3.81), hence one may get:

g = 422
ay = 0 ‘
) ‘ ' (3.133)
bl = U
kb
Thus,
2 dy —ex o ' dl o
P= e O Moy (=S5 —7) + CrM_y ‘2 )| (3.134)
In terms of Kummer’s function this yields to:
i dy = 2 3 d -
P=C IRl S - _
Cqa -+ 0147]8 F 1[1, 2 2P n ] (3 135)

Integrating equation (3.135) we get the complementary solution for

the stream function as follows:

1 1 d1
Je=Cun+ 0141F1[—2 5 9Py 'q |+ Cis (3.136)
and the first derivative of this function is:
13 di-a,
f = Cua + Cunl F1[5; 7 5 2 (3.137)

The particular solution is found assuming it in the form:

fo=2 Amng™" (3.138)
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The first, second and third derivatives are as follovws:

I

fo = Zize(m +2)Annm+
fo = ERaolm+2)(m+ )dnym
f;' = oarm(m+2)(m 4+ 1) 4,1
By substituting these terms in equation (3.127) we get:

6A,;
+E mmol{m +2)(m + 3)(m + 4)A(m+2)—

B2 (m + 1)(m + 2)Am]n”‘“

= Trlo (52t -

(d| )n JI,HZn )

nHlJ

(3.140)

By comparing the coefficients of both sides of equation (3.145) one

could obtain the coeflicient of the particular part of the

namely A4,.
For m = odd:

Amyz = (m+2))m}|-3)(m+4) [ H(m + 1)(m + 2)4,, — (G52 ) Ll‘]

where, £ = =1

for m = even:

Am = -a)(nlltl)(m+2) [(m + 2)(m + 3)(m + 4) Ay

+Cll ( 1) kk| (d o )k

where, k = =

Thus the final solution for the unsteady laminar regime is:

1 1d - )
f= 01377+0141F1[—2 2, 2P ]+C:5+fp

and the velocity is:

13 4 - ,

f —Cts+cx4T]1F1[2 5 ~2pr 1;2]+fp
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Tlle constants 013, Chiy and Cs are to be found using the boundary

conditions equation (3.59):
f(0) =0=Cu + Cis
f,(O) = 0 = Clg

F (1) =0 = Crs + Cranwa IF1[}; 345207 ) + £ (700

Solving the system of equation (3.145) we get:

013 = 0 ]
C S !P("Jm)

14 e 1F1[Li3, 522 2 d
C — fp(ﬂm)

15 e 1P 3520 | -

(3.145)

(3.146)

The governing equations were solved numerically using the integral-

iterative method {Appendix A). The computer programm is shown in (

Appendix B). The numerical solution is to be compared with the analyt-

ical one,
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Chapter 4

RESULTS AND DISCUSSIONS

4.1 Introduction

The aims of the present work,set in chapter 1, were Fo develop a new
‘analytical method to predict both the temperature an( velocity profiles in
the Trombe wall for a constant wall temperature, power law temperature
distribution in the steady state regime. The governing equations of the
unsteady state case were solved, too. The obtained analytical results

are compared with both numerically predicted results and with some

available experimental results.

4.2 Results And Discussions

Typical analytical results for both cases of power-Inw variation of wall
and a constant wall temperature were presented. 'Che results will be

compared with numerical and some available experimental data.

1. A constant wall temperature

The temperature distribution presented by the solution of equation

(3.89) for the laminar natural convection is shown in Fig.(4.1).These
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results are compared with the numerical solution. The figure shows
good agreement between the analytical and the numerical results.
Fig.( 4.2 ) shows the distribution of the Blasius velocity profile (f')
and the nondimensional stream function (f) as functions of 5 using
both analytical and numerical methods. The analytical solution for
{(f) and (f') were plotted using equations (3.102) and (3.103), respec-
tively. It can be seen that the results obtained using analytical exact
.solution are in good agreement with that obtained using numerical

techniques. These analytical solutions are also in good agreement

with some experimental data [39] and [45].

Nusselt number is ealculated using the following expression:

Nu(z) = _(G;"* )i (0) | (4.1)
Nu(z) = ~Cy(Z2)} (4.2)

where, C) is a constant as computed from equation (3.88).
An expression for Nusselt number was found experimentally to be
given by [54]:

Nu(z) = 0.39(Gr, Pr)¥ (4.3)

However, the local Nusselt number may be expressed as:

Nu(z) = H(Pr){/Gr. (4.4)
where, the values of H{Pr) can be obtained from a numerical solution

of the governing equations. The overall dependence of H(Pr) on Pr

was suggested by Le Fevre [54] in terms of the empirical relationship:

1

3 P i
H(Pr) == - (4.5)
4 12.43478 4+ 4.884Pr7 + 4.95283Pr
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The fiuid considered in this study was air, for which Prandtl number

Pr = 72,

Table (4.1) represents values for H{Pr) found by analytical, numeri-

cal, and experimental methods.

Table (4.1)

mumerical | experimental | analytical

H(Pr) 0.38711 0.35925 0.36324

The error b_etween-exbérimental results and those obtained using the
present technique is about 1% compared with 7.5% for the numerical

ones.

. The power-la;v distribution

The power law distribution considered at the wall is in the form:
To —Ta = N2" (4.6)

the first case considered is when n = 0, as that of an isothermal sur-

face,i .e the temperature at the wall is constant. This was considered

in the ﬁreviou-s section. The other physical circumstances that re--

late to the various values of n can be determined by studying the

physical quantities such as heat flux, boundary-layer thickness, etc.
The restrictions, if any, on the value of N must also be determined.

For a heated wall surface, T,, > T, and N is positive.
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If n -7 0, the temperature difference (Tw — 7%) becomes infinite as
¢ — 0, for a finite value of N, and decreases with z. This would be
acceptable only if an infinitesimal thermal source exists at z = 0.
For n > 0, the wall surface temperature is simply eciual to T, at z =0

and increases with z. The heat flux g(z) at a given location ¢ may

be expressed as:

9(z) = [~6'(0)]k A(2)C (=)

where,
1.,/Gr,
Alz) = N?" Cla)-= = ; - (4.7)
Therefore,
' q(z) ~ 2"z R (4.8)

the heat flux ¢(z) varies with z as indicated in equation (4.8) for
the power law temperature distribution. A particular case occurs,
when (T, —T,) varies as z+, and the heat flux ¢(z)=const, which cor-
responding to uniform heat flux case. The boundary layer thickness

§(z) and the velocity u are:

o 1—n

8(z) ~ o~ T4 (4.9}

u = vD(2)C(z)f ~ =" (4.10)

The value of n must be less than unity for the boundary layer thick-
ness.to be zero at z = 0, and to increase with :c., which was ex-
perimentally observed [54]. Also, n must be greater than —1.0 for

u to satisfy the condition that w = 0 at 'z = 0, which is physically

expected. This pgives —1 <n < 1.

¥
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The temperature distribution obtained using the new technique
which is presented by equation (3.115) for n=0.33 is compared with
the numerical results are shown in Fig.( 4.3 ). Both results‘are
in good agreement. Fig.( 4.4 ) showed the non-dimensional stream
function f and velocity f profiles as a function of 7 for n=0.33,
using numerical results and analyti&ll solution presented by equa-

tions (3.123) and (3.124),respectively. A good agreement was found

between these results.

The temperature distribuf.iou for various values of n==-0.33, -0.1,
0.0, 0.33, 0.5 are presented in Fig.( 4.5 ) As shown in this figure
at a given value of n the dimensionless temperafure increased with
n decreased. Fig.( 4.6 ) shows the non-dimensional stream function
f for the same values of n as indicated above. This figure indicated
that f ini:rez‘ised as the value of n is decreased. Thé Blasius velocity
f' profiles for different n values are shown in Fig.( 4.7 ). This figure
shows that the velocity f reaches its maximum value when n =
1.0. This peak value of f decreases as n increases. Fig.( 4.8 )

presents the temperature distribution for the particular case of n =

0.2 corresponds to a uniform heat flux. The velocity and stream

functions for this case were shown in Fig.( 4.9 ).

The local Nusselt number Nu(ﬁ:) is given by:

Nu(z) = H(Pr,n)Gr;f_ (4.11) |
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The analytical expression for. the Nusselt number can be estimated

as follows:

Gra .t .
i 4.12
) (412

Nufz) = —Cq(

where, C; is a constant obtained in equation (3.114).
The parameter H is now a function of Pr and n. For air the ana-

lytical computed values and the numerical ones obtained by [54] are

presented in table (4.2).

Table (4.2)
. H(Pt,n)
n
‘numerical analytical
-.333 310 323
=1 480 495
0 . .520 517
333 .640 610
X GG | .G85

The function Nu(z)/(Gr./4)% is plotted against n in Fig.( 4.10 ).
For n < —0.6, the function is found to be negative, indicating that
heat is transferred from the fluid to the heated surface for which
T, > T,. Since T, > T,, this implies an infinite thermal source at

H
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¢ = 00 and which supplics energy to the surface at all z. This 1s
clearly physically unreasonable.

For n = -0.6 it was found tilat the function is equal to zero. This
could be explained by the fact that the total amount of energy con-
victed by the flow in the boundary layer, Q. ~ z% is a constant
vnlue,-which would apply for an adiabatic surface, so that no heat

transfer occurs from the surface as the flow proceeds downstream.

The temperature distribution for the case when n = —0.6 is plotted

in Fig.( 4.11 ). o )

3. Unsteady laminar case

Steady laminar natural convection flow had been considered so far, in
which the velocity and temperature fields do not vary with time. In some
. solar energy systems, tlie transient natural convection flow and the re-
lated transport rates are of impo_ftance. The similarity solution in terms
of a similarity variable 7{z,y,t) was achieved. The condition fo:similarity

solution -to be attained was that the wall temperature distribution as a

function of z and ¢ is in the form:

Go =5

T 2z — 2d,dat (4.13)

where,ds is an arbitrary constant and d; is a parameter.
The temperature distributions obtained by the analytical new tech-
nique presented by equation (3.131) and that using the numerical method

are shown in Fig.( 4.12 ). This figure showed that both analytical and
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L]
llulnerlcal l'ESlll{'.S are ill good agreement. Fig.( 4.13 )} presented the dis-
tributions of the stream function f and velocity f. The analytical results

compared well with the numerical ones.
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Chapter 5

'CONCLUSIONS AND
RECOMMENDATIONS | .

5.1 Summary of the thesis

The literature survey presented,in chapter é, revealed that there is a
lack of analytical solution for the governing equation of a Trombe wall
encountered in a passive solar system. The number of analytical solutions
available :m the literature is very limited. This is due to the inevitable
coupling between the governing equations except for extremely simplified
cases.

The present work was to develop a new approximate analytical solu-

tion for some cases encountered in the Trombe wall.

5.2 Conclusions

Several points have emerged from this study which was taken to develop

a new technique for finding out analytical solution for heat transfer prob-
lems, with particular emphasis to the problem of Trombe wall.

In general the new analytical technique proves to be efficient in pre-
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dicting tho various thermal and hydrodynamic properties in the Trombe

wall,

These points con be suminarized as follows:

1. A very good agreemerit was obtained for the temperature distribu-

tion in the channel when both analytical and numerical techniques

were used. The average error was less than 0.2%.

2. The average deviation of the analytical solution from that of the

numerical solution for the nondimensional stream function (f) was

about 1.5%.

3. The analytical solution of Blasius velocity f was well predicted com-

pared with that obtained using the numerical technique. The aver-

age error was about 2.5%.

4. As was shown in table (4.1) the analytical value for the Nusselt
number deviated only 1% from that of the experimental results while

the numerical value deviates by 7.5%.

5. The temperature distribution for any value of n may be estimated
using the present analytical solution, on the other hand using nu-
merical solution will be limited by the computer time required to

find the solution.

6. The temperature distribution for any n has a good agreement when
both analytical and numerical techniques were used. The average

error was less than 0.4%.
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7. The average deviation of the analytical solution from the numerical

solution for the stream function for any value of n was less than

2.0%.

8. The analytical solution of the velocity (f') has a good agreement.

when compared with the numerical solution for any n, and the av-

erage error was about 3.0%.

9. The analytical temperature distribution for unsteady case obtained
using this new technique, was in a very good agreement with the

numerical results. The average error was less than '1%.

10. The nondimensional stream function for the unsteady state case was
well predicted compared with the numerical solution, and the error

was about 4%.

11. The Blasius velocity profile obtained using new analytical technique

deviated in about 5.3% from that of the numerical solution.

5.3 Recommendations

The review of the literature survey together with the forms of the gov-
erning equations solved in the present investigation, suggest that there

is a room for the present new technique to be used to solve similar some

problems in heat transfer and fluid mechauics.

Some of recommendations for future works may be summarized as fol-

lows:
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1. The guessed function distribution (stream function) was assumed to
be in the form f = an equation (3.73), to improve the solution this
function may be assumed in other forms like f=an+ 8 or f=an

Using these forms the resulting equations to be solved will be more

complicated and need much more effort to solve.

. The geometry of the channel in this study was taken as a vertical

parallel plates. Other geometries should be investiga‘ted.

- For flow over a wedge with free stream velocity variations of the
form U = Cz™, where ¢ constant and m is related to the wedge

angle (Gr), the similarity solution may be attained and then solved

using this new technique.

+ The technique presented here may be used to investigate the prob-

lem of transpiration on a flat plate-laminar boundary layer.
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Appendix A

NUMERICAL COMPUTATION

U3 2" 40 =0
8" +3Prf6' =g
Integrating (2) we get:
' ' = Ny Jo 3Prsdn
0= A /0 "l J 3 simy gy ]

Using the boundary conditions one could get:

B(01c0) = 0 = L+ Ny f=le I e 1y,

1
fonm [e_ fo 3Pr.fdr1]d,q
Finally the temperature distribution is:

J'Vl = —

Jle™ 7 arrtimyay
Syl 3P sany g

Rearrange equation (4.1) in the form:

f=1-—

fU4 35 =217 g

Integrating this equation we get:

R VA S TP Y FRS
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(A1) -

(A.2)

(A.3)

(A.4)

(A.5)

(A6)

(A.7)

(A.8)

(A.9)
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f=0fdn
= e B | T~ o) + ) by + 1,
With the boundary conditions:

U

f0)=0 = Ny =0
f=Rrd |
= 5 {5 (e oren

{f;’ [efo" Wi (of" 9)] dn + N;,} Ydn }dy + Ny

The boundary conditions are:

f0)=0 = N

i
o

fo=0

f""{e- J5aran I [Joﬂ M (2f" —a) ]dn}dn

N3 = - 2]
c_fﬂ Jﬁ”dn

The numerical method of solution is described as follows:

1. Assume any distribution for f

(A.10)

(A.11)

(A.12)

(A13)

(A.14)

2. Calculate f using any integrating scheme (the Simp_son’% Rule method

was used)
3. From equation (A.7) calculate 6

4. Using Equation (A.10) calculate f',

(31

I fras = frrcvious = STOP.

6. ELSE GOTO STEP 2.

36
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Appendix B |
PROGRAMME LISTING

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCeeec

C : A PROGRAMME FOR SOLVING NONLINEAR EQUATIONS C
C ' FOR HEAT TRANSFER PROBLEM C
C : C
C ' C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCCOCCCCCCCoCCCCCCCrCoeoree

THE EQUATIONS ARE:

Errr 3 kot 2k % 200=0 ...t e e rnnnnn (1)

O T4+ PR*E* D =0 . ittt e (2)

TO SOLVE THESE EQUATIONS WE WILL USE AN

ITERATIVE INTEGRAL METHOD

F(X)=THE. GUESSED FUNCTION

F1{X}=TBE FIRST DERIVATIVE"f'"

5{X)=THE FUNCTION "f"

S1{X)=3.*PR*S(X)

S2(X)=INTEGRAL OF (S51(X))

S3{X)=EXP{-5S2(X}) .

S4(X)=INTEGRAL OF (53(X))

S5(X)=3.*5(X)

S6(X)=INTEGRAL OF (55(X))

ST(X)=EXP(S6(X))

SB(X)=2.*F1(X)**2-THETA(X)

S9(X)=5B8(X)*ST7(X)

S10(X)=INTEGRAL OF (S9(X))

" S11(X)=EXP(-S6(1I))

S12(X}=S10(X)+C3

813(X)=S11(X)*S512(X)

S14(X)=INTEGRAL OF {S813(X))

S1S5(X)=810(X)*S11(X)

S16{X)=INTEGRAL OF (S15(X))

S17(X)=INTEGRAL OF (S11(X))

C3=-516(BB)/S517(BB}

THETA=THE TEMPERATURE DISTRIBUTION

THETA=1-54(X)/S54(BB)

B=THE LAST X
PARAMETER(EN=1./3.,PR=.72,N=401,B=.011,p1=2.E-7,ERR=555)
DIMENSION F1(500),5(500),51{(500),52(500},THETA{500)
53(500),54(500),55(500),56(500),87(500),V(500),WHWE(500)
s8(500),59(500),510(500),511(500),5812(500),524(500}
SUM(500),s5UM2(500),50M1(500}),522(500),823(500),WE(500) .

agonoaaaonOooQaOaoaoonaaaaOoooaOoOOOOann

j=a]
-
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33

2876
444

12

16
50
51
80
190

110

123
742

130

1123

137
1129

140

513(500),514(500),515(500),516(500) ,517(500) ,R(500)
X(500),F(500),Fr(500),518(500),519(500),520(500),521(500)

OPEN(5,file=*SAD1.OUT’ , STATUS='0OLD" )
OPEN(G,file='SAD.OUT’,STATUS='NEW')

' DO 33 Iwl,N .
- READ(5,222)X(I),S(I),F2(1),THETA(I)

CONTINUE

GUESS ANY DISTRIBUTION OF f£/SSUCH THAT SATISFIES THE
BOUNDARY CONDITIONS. _ '
DO 444 1=1,N
S13{(I)=(EN+3.)*PR*S(1I}
CONTINUE

DO 12 1I=1,N

V(I)=513(1I)

CONTINUE

CALL SIMPS(V,R)

bo 16 1=1,N

S14(1}=R(1)

CONTINUE

DO 50 I1I=1,N
S15(I)=EXP(-S14(1})

CONTINUE

DO 51 1=1,N

S16(I)=EXP(S14(1})

CONTINUE

DO 80 I=1,N
S17(I)=4.*EN*PR*F1(I)*THETA(I)
CONTINUE

DO 190 I=1,N
S51B(I)=S17(1I)*516(1)

CONTINUE

DO 110 I=1,N

V{I})=518(1)

CONTINUE

CALL SIMPS(V,R)

DO 123 I=1,N

S19(I}=R(I)

CONTINUE

DO 742 I=1,N
S20(I)=819(1)*515(1)

CONTINUE

DO 130 I=1,N ‘ -
V(I)=520(1I) *
CONTINUE

CALL SIMPS(V,R)

DO 1123 1=1,N

521(I)=R(I)

CONTINUE

b0 137 I=1,N

V{(I)=815(1)

CONTINUE

CALL SIMPS(V,R)}

DO 1129 1=1,N

S22(I)=R{(I)

CONTINUE :
CCl=—{14+821(N))/522(M)

DO 140 1=1,N
S23(I}=S21(I)+CT1*S22(1}+1
CONTINUE
524(1)=515(1)#*S1¢(1)+CC1*515(1)
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5243

4253
146

176
019
534

656

122

1163

1161

2123

124

1263

1162

1125
126

169

167

521

bo 5243 I-1,N

WE(I)=RBS(523(I)-THETA(I))
CONTINUE

DO 4253 I=1,N
IF{WE(I).LE.D1} THEN
CONTINUE
IF(I.EQ.N) GO TO 919
ELSE

GO TO 446

ENDIF

CONTINUE

DO 176 I=1,N
THETA( X )=ABS(523(1))
CONTINUE

GO TO 2876

DO 534 1=1,N.
V(I)=F1(1I)
CONTINUE

CALL SIMPS(V,R)

DO 656 I=1,N
S(I}=R{I)

CONTINUE

Do 122 1=1,N
S1(I)=(EN+3.)*S(I)
po 1163 i=1,N
V(I)=S81(1)
CONTINUE .
CALL SIMPS{V,R)

bo 1161 1I=1,N
S2(I)=R(I)
CONTINUE

Do 2123 1=1,N
S3(I)=EXP(-582(1))
DO 124 I=1,N
S4(I)=EXP(52(1))
DO 1263 I=1,N
V(I)=53(I)
CONTINUE

CALL SIMPS(V,R)

DO 1162 I=1,N
S5(I)=R(I)
CONTINUE

DO 1125 1=1,N
S6(I)=2.%{EN+1.)Y*F1l(I)**2-823(1)
CONTINUE

DO 126 1=1,N
S7(I)=56(I)*S4(1}
DO 169 1=1,N
V{I)=S7(1I)
CONTINUE

CALL SIMPS{V,R)

Do 167 I1=1,N
S8(I)=R(I)
CONTINUE

Do 521 I=1,N
S9{I)=588{I}*5:(1)
CONTINUE

DO 643 1=1,H
V{I)=S9(I1)
CONTINUE
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177

499

5143

4153
1446

1176
789
223
222

555

CALL SIMPS(V,R)
po 177 1=1,N

S10(I)=R(I)
CONTINUE
Cl1=-8S10(N}/S5(N)

DO 499 I=1,N
S11(1)=510(I)+Cl1#S5(1)
CONTINUE

poO 5143 1=1,N
WWE(I)=ABS(S11(I)-F1{(I))
CONTINUE

PO 4153 1=1,N
IF(WWE(I).LE.D1) THEN
CONTINUE

IF{I.EQ.N) GO TO 789
ELSE

GO TO 1446

ENDIF

CONTINUE

DO 1176 I=1,N
F1(I)=ABS(S11(I))
CONTINUE

GO TO 2876

DO 223 I=1,N
WRITE(6,222) X{(I),5(1),F1(I),THETA(I})

FORMAT(2X,'X(I)=",D20.13,2%,’S(I)=',D020.13,2X,

p20.13,2X, "THETA(1)=",D20.13}
STOP
END

SUBROUTINE SIMPS{V,R)

PARAMETER(H=.011,N=401)

DIMENSION SUNM2(500),SUM{500),Y{500),NM{500)
DIMENSION DK({500),SUM1(500),v{(500),R{500)
SUM(1)=0.

SUM(2)=H/2.%(V(1)+V(2})

SUM3=0.

SUMA=0.

Do 221 K=3,N

NM{K)=K/2

Y(K)=K/2.

DE(K)=Y(K)-NM(K)

IF{DK(K).EQ.0) THEN
SUM{K)=(V(1)+V(FK))}*H/3.
SUMI({K)=SUM3+R/3.*(2.*V(K=-1))
SUM3=SUM1(E)

SUM(K)=SUM{E)+SUHM3I+SUN4

'Fl(I)="
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PARANETER(B=1.5,ALFA=,1900624,PR=,72,N=401,N1=33,}=.011,p1=22. 7.
&, BDb=.5,NN=57,MN1=56,A10=-4.095125675201,EN1=0.
&, TT=-—, 5137015581131)
double precision AA,CC,BB,TERM
DIMENSION ADD(?O),F(SOO) x(500) AAL(70),AA11(70),F2(500),FS1(500)
DIMENSION SUM1(500),THETA(500),F1(500),SUM2(500),FF(500)
OPEN(4,FILE="NAT.OUT',STATUS='NEW'}
csssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss
Cl10=-Al0
A=—({EN1+1l.)/(EN1+3)
D=—(3.*EN145.)/(2.*(EN1+3.))
B10=~1./2./ALFA
DO 110 1=1,N
X{I)=H*FLOAT(I-1)
SUM=1.0
Do 920 IK=1,N1
Y=({EN1+3,)*ALFA/2,}** 5*X(1I)
Ah=1.
BB=1,
cC=1.
DO 49 K=1,IK
AA=AA* (A+K-1)
BB=BB*(B+K-1)
CC=CC*FLOAT(K)
49 CONTINUE
M=2*IK
TERM=(AA/BB) /CC*Y**NM
SUM=SUM+{~1)**IK*TERM
920 CONTINUE
ss5=1.
SUML(I)=SUM
DO 9920 IK=1,N1
Y=( (EN1+3, ) *ALFA/2.)%* G4X (1)
AA=1.
BR=1.
cC=1.
DO 94 K=1,1IK
AR=AA* (AD+K-1)
BB=BB* (BD+K-1)
CC=CC*FLOAT(K)
94 CONTINUE _ -
M=2*1IK
TERM=(AA/BB) /CC*Y**H
85=55+{—-1)**IK*TERM
9920 CONTINUE
SUMZ2(1)=55
BETA=( (EN1+3.)*ALFA*PR/2.)
AZ=3.*(1-EN1)/2./(EN1+3.)
Ba=1.5
0=0.
SW=1,/2./ALFA*X(1)
DO 4 K=NN,1,-2
BE=(K+1}*{(K-2)*EN1+3.#*K-2.)
Abh=1.
BR=1,
RI=1.
KP=(K+3)*(K+2Y*({L+1)

32
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55

45

110

oRe!

nao

AMI=FLOAT(K-1)/2.

KI=AMI+1

DO 5 II=1,AMI

AR=AA*(AZ+II-1)

BB=BB*(BA+II-1)

RM=RI*FLOAT(II)

RI=RM

CONTINUE .
ARL(K)=1./(BRK*ALFA)*({-1)**KIJ*BETA**AMI/BB/RI*ARXTT-KP*0)
0=AA1(K) :
F(I)=SW+AAY(K)*X(I)}**(K+1)

SW=F(1)

CONTINUE

‘Al=-2,*EN1/(EN1+3.)

Bl=.5

Sl=0.

01=0,

DO 45 1I=NN1,1,-2 -
BK1=FLOAT(II*(II+1))*(EN1+3.)~2.*FLOAT{II+1)*(EN1+1)

AN2=1, ‘

BB2=1,

RIZ2=1,

KP2=(II43)*{II+2)*(II+1)

AMI2=FLOAT(I1}/2.

KJ1=AMI2+]

DO 55 III=1,AMI2

AAZ=AA2*(Al1+ITI-1)

BB2=BB2*(B1+III-1)}

RM2=RI2*FLOAT(III)

RI2=RM2

CONTINUE
AAll(II)=l./(BKl*ALFA)*((—1)**KJl*BETA**AMIZ/BBZ/RIZ*AAZ*TT—KPZ*OI
01=AA11(II}

FSl(I)=Sl+AA11(II)*X(K)**(II+1)

S1=FS51(1)

CONTINUE

F2(I)=F(I)+FS51(1)

FF(I)=B10*SUM1(I}*X(I)+A10*SUM2(I)+ClO+F2(I)

CONTINUE

PRINT*,F2(N) .
PRINT*, SUM2(N) , SUML(N)
DO 90 I=1,N
WRITE(4,67)X(I),FF(I)
FORMAT(2X,"X(I)=’,D20.13,2X, "FF(I)=',D20.13)
FORMAT{ZX,'X(I)=',D20.13,2X,'S(I)=',020.13,2x,'Fl(I)=',D20.l3
2X,"THETA{1)=',D20.13)

» FF(N), F(N)

CALL INIPLT(O,.TRUE.,1.0)
CALL VIEWPORT(0,8000,0,20000)
CALL GRAPHBOUNDARY(2000,6800,3000,8000)
CALL SETLEGEND(1300,1800,0)
CALL SCALE(0.0,4.5,0.0,.8)
CALL AXIS (1.0,710.1',7ETA’,3,.20,710.1', 'VELOCITY ', 3)
~ (¥X,¥,N,COL,SYM 0-8 ,SIZE 0-9,NUM 1- ,LINE 0-8)
CALL POLYLINE(X,SUM1,401,0,0,0,0,0)
CALL POLYLINE(X,FF,401,0,0,0,0,8)
CALL 'POLYLINE(X,SUM2,401,0,0,0,0,2)

*******w-k*******ﬁ****************

CALL WRITELEGEND(’Fig.l Temperature distribution r,0,0,2,0,9)
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M

CALL
CcCALL
CALL
CALL
CALL

WEITELEGELD: |
YRITSLEGEND(
RITEZLEGEND(
WRITELEGEND( "
SETLEGEND(2000,990¢,200)

Start writing from the bottom

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
END

***'.‘r*ﬁ'.-‘-::ﬁ*‘.-'r*******ﬁ*************ﬁ*

WRITELEGEND( '
WRITELEGEND( '
WRITELEGEND('
WRITELEGEND{ *
WRITELEGEND( ‘
WRITELEGEND( '
WRITELEGEND( ’
WRITELEGEND( ’
WRITELEGEND(’VELOCITY
WRITELEGEND( 'VELOCITY
WRITELEGEND( '

ENDPLT

9y
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(]

X!

(]

cubl VIEWEORT(G, 20040,9,20000!
CALL GRAPHBOUNDAEYY 2000,5800,3000,8000\
CALL SETLEGEMD(1220 0,1800,0)
CALL SCaALE(O0.0, 4.5,0.0,1 0}
CALL AXIS (1.0,72C.1¢,°.7,3,.2,710.17, . ",3)
(A,-,N coL,s¥n 6-3 ,SIZE G-9,NUM 1- ,LINE 0-8)
CALL SHOOTH{X,THETAL, 101,0,GC,0,0,0)
CALL POLYLINE(X,THETA, 401,0,0,0,0,2)
CALL POLYLINE(X,SumM2,401,0,0,0,0,2) :

EE R R *******R***w**********

CALL WRITELEGEND({'Fig. 4.1 Temperature distributions
,0,0,2,0,9)

CALL WRITELEGEND(’

CALL WRITELEGEND('

CALL WRITELEGEND('

CALL WRITELEGEND('

CALL SETLEGEND(3500,8700,200)

Start writing from the bot tom
*********************************

- m o
-~ m o= =
= N R o o)
]
(o N o R Qo
R
pa B B DN
. e~
oo
- - - -
Ve Ve WNaJRTs)
—— e et et

*
~
*

CALL WRITELEGEND( '’

CALL WRITELEGEND('

CALL WRITELEGEND({ "

CALL WRITELEGEND('

CALL WRITELEGEND({ '

CALL WRITELEGEND(’

CALL WRITELEGEND('

cALL WEITELEGEND('

CALL WRITELEGEND({'Analytical solution
CALL WRITELEGEND{'Numerical solution
CALL WRITELEGEND( *

CALL ENDPLT

END

J N L
==l eR=R=g=laola el
R
cCOoOoCDOoOOOoOOOO0O
Py A
ST o o ol ol ll all o
R T )
OO OoOOOoQ0O0O0
I R
OO WD\ W WO
H_ﬂ-—'w_ﬂ-—l‘-dv‘-’v'-—f—-—f‘—t

R . T T R e B

g6
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PARAMETER(EN1=0. 3=.5,RL?K ..300824,PE=.7Z,H=402,1=33,
& E=.011,71=22./7.,8BD=1.5,M1=57,al1=, 3131015581131}

double precision AA, CC BB TERIH

DIMENSION THETAI(SOO),K(:DO), SUM1(500),5UM2{500",5(500)

&, Fl(500),THETA(500)
OPEN(%,file="BAT1.QUT',STATUS="0OLD')
OPEM(6,FILE='THETALl.OQUT',STATUS="NEW’) !
READ(*,*) YE
DO 33 1=1,N
READ{5,222)X(1),8(1),F1(I),THETA(I)

33 COMTINUE
DO 10 I=1,N
A=-2_.*%EN1/(EN1+3.)
X(I)=H*FLOAT({I-1)
SUM=1.0
DO 20 IK=1,N1
¥Y=({EN1+3. )*PP*ALFA/Z y** S*X(I)
AA=1,
BB=1,
cCc=1.
DO 4 K=1,IK
ARA=AA* (A+K-1)
BB=BB* (B+K-1)
CC=CC*FLOAT(K)
4 CONTINUE
M=2*IK
TERM= (AR /BB ) /CC*xY**HM
SUN=SUM+(—-1)**IK*TERM
20 CONTINUE
SUMI{I)=SUM
AD=3.%(1.-EN1}/{(2.*(EN1+3.))
X(I)=H*FLOAT(I-1)
SUM=1.0
Do 21 IK=1,N1
Y=( (EN1+3. )*PR*ALFA/Z YR* 5%X(1)
AR=1.
BB=1.
cCc=1.
DO 14 EK=1,1IK
AA=AA* (AD+KE-~1)
BB=BB* (BD+K-1)
CC=CC*FLOAT(K)
14 CONTINUE
M=2*IK
TERM=(AA/BB) /CCHY**}
SUM=SUM+(—1)**IK*TERHN
21 CONTINUE
SUM2(I)=SUM
THETAL(I}=SUMI1{(I'-Al1+*X{I}*SUM2(I)

10 CONTINUE
DO 90 I=1,N
90 WRITE(6,67)X(I),THETALl(I)
7 FORMAT(2X, "X(I}=',D20.13,2X, 'THETAL(I}=',D20.13)
22 FORMAT(2¥X,'X(I}=',D20.13,2X,"5(I)=",D20.13,2%, 'F1{1)="
&, D20. 13,L.,’THETA(I)=' D20.13) .

CALL INIPLT{O,.TRUEZ.,:.0}

33
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Appendix C
TRANSFORMATIONS

2 3 r

3 P 3 P
0= e [c Moy () + O My (BT ’)]
9= \_/'z_'"_n'_e :llPr : [c o llf"',.,?(SQPr‘TIZ) IFI[I + + 1+ 2, 3(1}’1-172 .
+C;e :u:"r ‘1(3aPr-,q2) 1F1[;— - 1 + 1, 1 _ %, .,azPr,q,Z]
" 3 JaP aPr 2 1 3 3aP
6=Cle 5+ Gy e TR = 3 g
1 P
6= C +GIF1[3; 3 30‘ "
With the boundary conditions:
6(0) =1 () = 0
Thus:
C1 = ].
— 1
02 - “ﬂmlFI[%:%:a(’frﬂﬂg]
Finally the temperature distribution is:
7 1 3 daPr ,
f=1- - 1F1 7
nooIFl[;) g: SePr 172 [ 2 ]

The goverfzing equations are reduced as ‘follows:

97

(C.6)
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» continuity

(C8)

JIsodedsisey] Jo WD - uepior Jo AYiseAIUN Jo Aklq!T - peARSSY SIUDIY ||V

—— o~ —~—
o = —
1S3 ) O
S S
A
~
— UL S
L] -~
B e, ] ~N 3J.rl.
. _u - ~ —
2rr-. ) — [ S e .
— o D) B { - ! B |
=1 I 1 3 B - __
B - | 3= o) = m..w -
| = B b = sl 3 <
Ell [ ) fmalu\ —— B \.FUJ +
=~ ) = - S o
Q [ — \ , - B 3
= - - Lol sty rrJ _ S,
" g .”.4. \.-..“..-r ey _m.u _m.m e o
- o ] w
. + N 2 2> s B |
_,,.w —— 1r...“.J | o 8 & = @ly .,
8 * kL S Sy
R, 2 T R A c>
. =~ A S . — = |H + +
3] v = ﬂ Y —— B B B —
. & T B B = 5 3
- ! 1 -+ (M ! ! o E Y
nwlll - L ) i Ed —
B B \l.aJ {9 B E~ - |
< 3 S g7 |3 |3 Tk
. S , _ o St — JO.IUa\
F = - -~
& - = e — 3 -R
5 " = ? i i T
o
Ly =+
2 B
I il

+ momentum
19/ (

Finally:
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The integrating of Kummer’s function.

—lage 13 Ja Bt ?. 1 3=
n
fc =L Pcdn
fau = [T AP 55 2 e ldn )

y="2an® dy = (n+3)andy

2y —
17 VY fraa 41 = i %Y

= C [ e vy 51F1[528E Liyldy

= Ce'yyz 1F1[2‘z':+g), z,y]

Finally:
5n + 11 3 n+3
2(n + 3) 2

fa = Cre T 1R an’

The second term of this integral is:

fo= e o qlF1[224; 3, 2 an? Jdy

y="ap’ dy = (n+3)andy

H
2
’7—\/("+s)a d” s Y

= C [eVIF1[2842; 3.y]dy

= Ce ¥1F1[22E

n+3’2’ ] /

And the second termn is:

n+2 1 n+3
+3 2 2

fo = Coe” T IFL2 o’
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0

e Experimental results

— Analytical solution

- Numer ical solution

Fig.4.2 The stream and velocity

profiles
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1
T

1.0
— Analytical solution
0.9 — ' -~ Numerical solution
- n=0.33
0.6 —
0.4 —
0.2 —
0.0 I ' et
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Fig.4.3 Temperature distributions
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1.0
— Analytical solution
-- Numer ical solution
0.8 @ Numerical solution (4]

n=.33

Fig.4.4 The stream function and

velocity profiles
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4.5 The analytical temperature
dlstributions for different

values of n
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Fig.( 4.6 ) The analytical solutions
for the stream function

for different n
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profiles
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Fig.( 4.7 ) The analytical velocity
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— Analytical solution
0.8 — - Numer ical solution
| n=0.2
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® 0.4
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Fig. 4.0 Temperature distributions
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Fig.4.9 The analytical stream function

and velocity profiles
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— Analytical solution

-- Numerical solution
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M

Fig.4.10 Dependence of the local Nusselt
number on the value of n, for a power ~law

surface temperature distribution.
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Fig. 4.11 anolytical temperature

distr ibution for n=—.56

]

1o

All Rights Reserved - Library of
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—— . Analytical solution
0.8 — — -- Numer ical solution
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Fig.4.12 Temperature distributions

for unsteady state conditions
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Fig.( 4.13 ) The stream function and
velocity profiles
for unsteady state case
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